684. Redundant Connection

In this problem, a tree is an undirected graph that is connected and has no cycles.

You are given a graph that started as a tree with n nodes labeled from 1 to n, with one additional edge added. The added edge has two different vertices chosen from 1 to n, and was not an edge that already existed. The graph is represented as an array edges of length n where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the graph.

Return an edge that can be removed so that the resulting graph is a tree of n nodes. If there are multiple answers, return the answer that occurs last in the input.

 Example 1:

Input: edges = [[1,2],[1,3],[2,3]]
Output: [2,3]

Example 2:

Input: edges = [[1,2],[2,3],[3,4],[1,4],[1,5]]
Output: [1,4]

 Constraints:

  • n == edges.length
  • 3 <= n <= 1000
  • edges[i].length == 2
  • 1 <= ai < bi <= edges.length
  • ai != bi
  • There are no repeated edges.
  • The given graph is connected.

JAVA

  • class Solution {
        private int[] p;
    
        public int[] findRedundantConnection(int[][] edges) {
            p = new int[1010];
            for (int i = 0; i < p.length; ++i) {
                p[i] = i;
            }
            for (int[] e : edges) {
                int a = e[0], b = e[1];
                if (find(a) == find(b)) {
                    return e;
                }
                p[find(a)] = find(b);
            }
            return null;
        }
    
        private int find(int x) {
            if (p[x] != x) {
                p[x] = find(p[x]);
            }
            return p[x];
        }
    }

C++

  • class Solution {
    public:
        vector<int> p;
    
        vector<int> findRedundantConnection(vector<vector<int>>& edges) {
            p.resize(1010);
            for (int i = 0; i < p.size(); ++i) p[i] = i;
            for (auto& e : edges) {
                int a = e[0], b = e[1];
                if (find(a) == find(b)) return e;
                p[find(a)] = find(b);
            }
            return {};
        }
    
        int find(int x) {
            if (p[x] != x) p[x] = find(p[x]);
            return p[x];
        }
    };

PYTHON

  • class Solution:
        def findRedundantConnection(self, edges):
            p = list(range(1010))
    
            def find(x):
                if p[x] != x:
                    p[x] = find(p[x])  # Path compression
                return p[x]
    
            for a, b in edges:
                if find(a) == find(b):
                    return [a, b]
                p[find(a)] = find(b)
    
            return None

Comments