2948. Make Lexicographically Smallest Array by Swapping Elements
You are given a 0-indexed array of positive integers nums and a positive integer limit.
In one operation, you can choose any two indices i and j and swap nums[i] and nums[j] if |nums[i] - nums[j]| <= limit.
Return the lexicographically smallest array that can be obtained by performing the operation any number of times.
An array a is lexicographically smaller than an array b if in the first position where a and b differ, array a has an element that is less than the corresponding element in b. For example, the array [2,10,3] is lexicographically smaller than the array [10,2,3] because they differ at index 0 and 2 < 10.
Example 1:
Input: nums = [1,5,3,9,8], limit = 2 Output: [1,3,5,8,9] Explanation: Apply the operation 2 times: - Swap nums[1] with nums[2]. The array becomes [1,3,5,9,8] - Swap nums[3] with nums[4]. The array becomes [1,3,5,8,9] We cannot obtain a lexicographically smaller array by applying any more operations. Note that it may be possible to get the same result by doing different operations.
Example 2:
Input: nums = [1,7,6,18,2,1], limit = 3 Output: [1,6,7,18,1,2] Explanation: Apply the operation 3 times: - Swap nums[1] with nums[2]. The array becomes [1,6,7,18,2,1] - Swap nums[0] with nums[4]. The array becomes [2,6,7,18,1,1] - Swap nums[0] with nums[5]. The array becomes [1,6,7,18,1,2] We cannot obtain a lexicographically smaller array by applying any more operations.
Example 3:
Input: nums = [1,7,28,19,10], limit = 3 Output: [1,7,28,19,10] Explanation: [1,7,28,19,10] is the lexicographically smallest array we can obtain because we cannot apply the operation on any two indices.
Constraints:
1 <= nums.length <= 1051 <= nums[i] <= 1091 <= limit <= 109
JAVA
class Solution { public int[] lexicographicallySmallestArray(int[] nums, int limit) { int n = nums.length; Integer[] idx = new Integer[n]; for (int i = 0; i < n; ++i) { idx[i] = i; } Arrays.sort(idx, (i, j) -> nums[i] - nums[j]); int[] ans = new int[n]; for (int i = 0; i < n;) { int j = i + 1; while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) { ++j; } Integer[] t = Arrays.copyOfRange(idx, i, j); Arrays.sort(t, (x, y) -> x - y); for (int k = i; k < j; ++k) { ans[t[k - i]] = nums[idx[k]]; } i = j; } return ans; } }
C++
class Solution { public: vector<int> lexicographicallySmallestArray(vector<int>& nums, int limit) { int n = nums.size(); vector<int> idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int i, int j) { return nums[i] < nums[j]; }); vector<int> ans(n); for (int i = 0; i < n;) { int j = i + 1; while (j < n && nums[idx[j]] - nums[idx[j - 1]] <= limit) { ++j; } vector<int> t(idx.begin() + i, idx.begin() + j); sort(t.begin(), t.end()); for (int k = i; k < j; ++k) { ans[t[k - i]] = nums[idx[k]]; } i = j; } return ans; } };
PYTHON
class Solution: def lexicographicallySmallestArray(self, nums, limit): n = len(nums) idx = list(range(n)) idx.sort(key=lambda i: nums[i]) # Sort indices by the values in `nums` ans = [0] * n i = 0 while i < n: j = i + 1 # Find a contiguous block where the difference is within the limit while j < n and nums[idx[j]] - nums[idx[j - 1]] <= limit: j += 1 t = sorted(idx[i:j]) # Sort the indices in the current block for k in range(i, j): ans[t[k - i]] = nums[idx[k]] i = j # Move to the next block return ans
Comments
Post a Comment