1462. Course Schedule IV

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course ai first if you want to take course bi.

  • For example, the pair [0, 1] indicates that you have to take course 0 before you can take course 1.

Prerequisites can also be indirect. If course a is a prerequisite of course b, and course b is a prerequisite of course c, then course a is a prerequisite of course c.

You are also given an array queries where queries[j] = [uj, vj]. For the jth query, you should answer whether course uj is a prerequisite of course vj or not.

Return a boolean array answer, where answer[j] is the answer to the jth query.

 Example 1:

Input: numCourses = 2, prerequisites = [[1,0]], queries = [[0,1],[1,0]]
Output: [false,true]
Explanation: The pair [1, 0] indicates that you have to take course 1 before you can take course 0.
Course 0 is not a prerequisite of course 1, but the opposite is true.

Example 2:

Input: numCourses = 2, prerequisites = [], queries = [[1,0],[0,1]]
Output: [false,false]
Explanation: There are no prerequisites, and each course is independent.

Example 3:

Input: numCourses = 3, prerequisites = [[1,2],[1,0],[2,0]], queries = [[1,0],[1,2]]
Output: [true,true]

 Constraints:

  • 2 <= numCourses <= 100
  • 0 <= prerequisites.length <= (numCourses * (numCourses - 1) / 2)
  • prerequisites[i].length == 2
  • 0 <= ai, bi <= n - 1
  • ai != bi
  • All the pairs [ai, bi] are unique.
  • The prerequisites graph has no cycles.
  • 1 <= queries.length <= 104
  • 0 <= ui, vi <= n - 1
  • ui != vi


JAVA

  • class Solution {
        public List<Boolean> checkIfPrerequisite(int n, int[][] prerequisites, int[][] queries) {
            boolean[][] f = new boolean[n][n];
            for (var p : prerequisites) {
                f[p[0]][p[1]] = true;
            }
            for (int k = 0; k < n; ++k) {
                for (int i = 0; i < n; ++i) {
                    for (int j = 0; j < n; ++j) {
                        f[i][j] |= f[i][k] && f[k][j];
                    }
                }
            }
            List<Boolean> ans = new ArrayList<>();
            for (var q : queries) {
                ans.add(f[q[0]][q[1]]);
            }
            return ans;
        }
    }

C++

  • class Solution {
    public:
        vector<bool> checkIfPrerequisite(int n, vector<vector<int>>& prerequisites, vector<vector<int>>& queries) {
            bool f[n][n];
            memset(f, false, sizeof(f));
            for (auto& p : prerequisites) {
                f[p[0]][p[1]] = true;
            }
            for (int k = 0; k < n; ++k) {
                for (int i = 0; i < n; ++i) {
                    for (int j = 0; j < n; ++j) {
                        f[i][j] |= (f[i][k] && f[k][j]);
                    }
                }
            }
            vector<bool> ans;
            for (auto& q : queries) {
                ans.push_back(f[q[0]][q[1]]);
            }
            return ans;
        }
    };

PYTHON

  • class Solution:
        def checkIfPrerequisite(self, n, prerequisites, queries):
            # Create a boolean matrix for prerequisite relationships
            f = [[False] * n for _ in range(n)]
            
            # Populate the matrix with direct prerequisites
            for u, v in prerequisites:
                f[u][v] = True
            
            # Use Floyd-Warshall to find transitive prerequisites
            for k in range(n):
                for i in range(n):
                    for j in range(n):
                        f[i][j] |= f[i][k] and f[k][j]
            
            # Answer each query based on the matrix
            return [f[u][v] for u, v in queries]

Comments