2762 - Continuous Subarrays

You are given a 0-indexed integer array nums. A subarray of nums is called continuous if:

  • Let ii + 1, ..., j be the indices in the subarray. Then, for each pair of indices i <= i1, i2 <= j0 <= |nums[i1] - nums[i2]| <= 2.

Return the total number of continuous subarrays.

A subarray is a contiguous non-empty sequence of elements within an array.

 Example 1:

Input: nums = [5,4,2,4]
Output: 8
Explanation: 
Continuous subarray of size 1: [5], [4], [2], [4].
Continuous subarray of size 2: [5,4], [4,2], [2,4].
Continuous subarray of size 3: [4,2,4].
Thereare no subarrys of size 4.
Total continuous subarrays = 4 + 3 + 1 = 8.
It can be shown that there are no more continuous subarrays.

 Example 2:

Input: nums = [1,2,3]
Output: 6
Explanation: 
Continuous subarray of size 1: [1], [2], [3].
Continuous subarray of size 2: [1,2], [2,3].
Continuous subarray of size 3: [1,2,3].
Total continuous subarrays = 3 + 2 + 1 = 6.

 Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 109

Solution 1: Ordered List + Two Pointers

C++

  • class Solution {
    public:
        long long continuousSubarrays(vector<int>& nums) {
            long long ans = 0;
            int i = 0, n = nums.size();
            multiset<int> s;
            for (int j = 0; j < n; ++j) {
                s.insert(nums[j]);
                while (*s.rbegin() - *s.begin() > 2) {
                    s.erase(s.find(nums[i++]));
                }
                ans += j - i + 1;
            }
            return ans;
        }
    };

JAVA

  • class Solution {
        public long continuousSubarrays(int[] nums) {
            long ans = 0;
            int i = 0, n = nums.length;
            TreeMap<Integer, Integer> tm = new TreeMap<>();
            for (int j = 0; j < n; ++j) {
                tm.merge(nums[j], 1, Integer::sum);
                while (tm.lastEntry().getKey() - tm.firstEntry().getKey() > 2) {
                    tm.merge(nums[i], -1, Integer::sum);
                    if (tm.get(nums[i]) == 0) {
                        tm.remove(nums[i]);
                    }
                    ++i;
                }
                ans += j - i + 1;
            }
            return ans;
        }
    }

PYTHON

  • class Solution {
    public:
        long long continuousSubarrays(vector<int>& nums) {
            long long ans = 0;
            int i = 0, n = nums.size();
            multiset<int> s;
            for (int j = 0; j < n; ++j) {
                s.insert(nums[j]);
                while (*s.rbegin() - *s.begin() > 2) {
                    s.erase(s.find(nums[i++]));
                }
                ans += j - i + 1;
            }
            return ans;
        }
    };

Comments