1014. Best Sightseeing Pair

You are given an integer array values where values[i] represents the value of the ith sightseeing spot. Two sightseeing spots i and j have a distance j - i between them.

The score of a pair (i < j) of sightseeing spots is values[i] + values[j] + i - j: the sum of the values of the sightseeing spots, minus the distance between them.

Return the maximum score of a pair of sightseeing spots.

 Example 1:

Input: values = [8,1,5,2,6]
Output: 11
Explanation: i = 0, j = 2, values[i] + values[j] + i - j = 8 + 5 + 0 - 2 = 11

Example 2:

Input: values = [1,2]
Output: 2

 Constraints:

  • 2 <= values.length <= 5 * 104
  • 1 <= values[i] <= 1000

C++

  • class Solution {
    public:
        int maxScoreSightseeingPair(vector<int>& values) {
            int ans = 0, mx = values[0];
            for (int j = 1; j < values.size(); ++j) {
                ans = max(ans, values[j] - j + mx);
                mx = max(mx, values[j] + j);
            }
            return ans;
        }
    };

JAVA

  • class Solution {
        public int maxScoreSightseeingPair(int[] values) {
            int ans = 0, mx = values[0];
            for (int j = 1; j < values.length; ++j) {
                ans = Math.max(ans, values[j] - j + mx);
                mx = Math.max(mx, values[j] + j);
            }
            return ans;
        }
    }

PYTHON

  • class Solution {
    public:
        int maxScoreSightseeingPair(vector<int>& values) {
            int ans = 0, mx = values[0];
            for (int j = 1; j < values.size(); ++j) {
                ans = max(ans, values[j] - j + mx);
                mx = max(mx, values[j] + j);
            }
            return ans;
        }
    };

Comments