2601 - Prime Subtraction Operation

You are given a 0-indexed integer array nums of length n.

You can perform the following operation as many times as you want:

  • Pick an index i that you haven’t picked before, and pick a prime p strictly less than nums[i], then subtract p from nums[i].

Return true if you can make nums a strictly increasing array using the above operation and false otherwise.

strictly increasing array is an array whose each element is strictly greater than its preceding element.

 Example 1:

Input: nums = [4,9,6,10]
Output: true
Explanation: In the first operation: Pick i = 0 and p = 3, and then subtract 3 from nums[0], so that nums becomes [1,9,6,10].
In the second operation: i = 1, p = 7, subtract 7 from nums[1], so nums becomes equal to [1,2,6,10].
After the second operation, nums is sorted in strictly increasing order, so the answer is true.

Example 2:

Input: nums = [6,8,11,12]
Output: true
Explanation: Initially nums is sorted in strictly increasing order, so we don't need to make any operations.

Example 3:

Input: nums = [5,8,3]
Output: false
Explanation: It can be proven that there is no way to perform operations to make nums sorted in strictly increasing order, so the answer is false.

 Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 1000
  • nums.length == n

C++

  • class Solution {
    public:
        bool primeSubOperation(vector<int>& nums) {
            vector<int> p;
            for (int i = 2; i <= 1000; ++i) {
                bool ok = true;
                for (int j : p) {
                    if (i % j == 0) {
                        ok = false;
                        break;
                    }
                }
                if (ok) {
                    p.push_back(i);
                }
            }
            int n = nums.size();
            for (int i = n - 2; i >= 0; --i) {
                if (nums[i] < nums[i + 1]) {
                    continue;
                }
                int j = upper_bound(p.begin(), p.end(), nums[i] - nums[i + 1]) - p.begin();
                if (j == p.size() || p[j] >= nums[i]) {
                    return false;
                }
                nums[i] -= p[j];
            }
            return true;
        }
    };

JAVA

  • class Solution {
        public boolean primeSubOperation(int[] nums) {
            List<Integer> p = new ArrayList<>();
            for (int i = 2; i <= 1000; ++i) {
                boolean ok = true;
                for (int j : p) {
                    if (i % j == 0) {
                        ok = false;
                        break;
                    }
                }
                if (ok) {
                    p.add(i);
                }
            }
            int n = nums.length;
            for (int i = n - 2; i >= 0; --i) {
                if (nums[i] < nums[i + 1]) {
                    continue;
                }
                int j = search(p, nums[i] - nums[i + 1]);
                if (j == p.size() || p.get(j) >= nums[i]) {
                    return false;
                }
                nums[i] -= p.get(j);
            }
            return true;
        }
    
        private int search(List<Integer> nums, int x) {
            int l = 0, r = nums.size();
            while (l < r) {
                int mid = (l + r) >> 1;
                if (nums.get(mid) > x) {
                    r = mid;
                } else {
                    l = mid + 1;
                }
            }
            return l;
        }
    }

PYTHON

  • from bisect import bisect_right
    
    class Solution:
        def primeSubOperation(self, nums):
            primes = []
            for i in range(2, 1001):
                is_prime = True
                for p in primes:
                    if i % p == 0:
                        is_prime = False
                        break
                if is_prime:
                    primes.append(i)
    
            n = len(nums)
            for i in range(n - 2, -1, -1):
                if nums[i] < nums[i + 1]:
                    continue
                j = bisect_right(primes, nums[i] - nums[i + 1]) - 1
                if j == -1 or primes[j] >= nums[i]:
                    return False
                nums[i] -= primes[j]
    
            return True

Comments