1574 - Shortest Subarray to be Removed to Make Array Sorted

Given an integer array arr, remove a subarray (can be empty) from arr such that the remaining elements in arr are non-decreasing.

Return the length of the shortest subarray to remove.

subarray is a contiguous subsequence of the array.

 Example 1:

Input: arr = [1,2,3,10,4,2,3,5]
Output: 3
Explanation: The shortest subarray we can remove is [10,4,2] of length 3. The remaining elements after that will be [1,2,3,3,5] which are sorted.
Another correct solution is to remove the subarray [3,10,4].

Example 2:

Input: arr = [5,4,3,2,1]
Output: 4
Explanation: Since the array is strictly decreasing, we can only keep a single element. Therefore we need to remove a subarray of length 4, either [5,4,3,2] or [4,3,2,1].

Example 3:

Input: arr = [1,2,3]
Output: 0
Explanation: The array is already non-decreasing. We do not need to remove any elements.

 Constraints:

  • 1 <= arr.length <= 105
  • 0 <= arr[i] <= 109

C++

  • class Solution {
    public:
        int findLengthOfShortestSubarray(vector<int>& arr) {
            int n = arr.size();
            int i = 0, j = n - 1;
            while (i + 1 < n && arr[i] <= arr[i + 1]) {
                ++i;
            }
            while (j - 1 >= 0 && arr[j - 1] <= arr[j]) {
                --j;
            }
            if (i >= j) {
                return 0;
            }
            int ans = min(n - 1 - i, j);
            for (int l = 0; l <= i; ++l) {
                int r = lower_bound(arr.begin() + j, arr.end(), arr[l]) - arr.begin();
                ans = min(ans, r - l - 1);
            }
            return ans;
        }
    };

JAVA

  • class Solution {
        public int findLengthOfShortestSubarray(int[] arr) {
            int n = arr.length;
            int i = 0, j = n - 1;
            while (i + 1 < n && arr[i] <= arr[i + 1]) {
                ++i;
            }
            while (j - 1 >= 0 && arr[j - 1] <= arr[j]) {
                --j;
            }
            if (i >= j) {
                return 0;
            }
            int ans = Math.min(n - i - 1, j);
            for (int l = 0; l <= i; ++l) {
                int r = search(arr, arr[l], j);
                ans = Math.min(ans, r - l - 1);
            }
            return ans;
        }
    
        private int search(int[] arr, int x, int left) {
            int right = arr.length;
            while (left < right) {
                int mid = (left + right) >> 1;
                if (arr[mid] >= x) {
                    right = mid;
                } else {
                    left = mid + 1;
                }
            }
            return left;
        }
    }

PYTHON

  • from bisect import bisect_left
    
    class Solution:
        def findLengthOfShortestSubarray(self, arr):
            n = len(arr)
            i, j = 0, n - 1
    
            while i + 1 < n and arr[i] <= arr[i + 1]:
                i += 1
    
            while j - 1 >= 0 and arr[j - 1] <= arr[j]:
                j -= 1
    
            if i >= j:
                return 0
    
            ans = min(n - 1 - i, j)
    
            for l in range(i + 1):
                r = bisect_left(arr, arr[l], j, n)
                ans = min(ans, r - l - 1)
    
            return ans

Comments