1545 - Find Kth Bit in Nth Binary String

Given two positive integers n and k, the binary string Sn is formed as follows:

  • S1 = "0"
  • Si = Si - 1 + "1" + reverse(invert(Si - 1)) for i > 1

Where + denotes the concatenation operation, reverse(x) returns the reversed string x, and invert(x) inverts all the bits in x (0 changes to 1 and 1 changes to 0).

For example, the first four strings in the above sequence are:

  • S= "0"
  • S= "011"
  • S= "0111001"
  • S4 = "011100110110001"

Return the kth bit in Sn. It is guaranteed that k is valid for the given n.

 Example 1:

Input: n = 3, k = 1
Output: "0"
Explanation: S3 is "0111001".
The 1st bit is "0".

Example 2:

Input: n = 4, k = 11
Output: "1"
Explanation: S4 is "011100110110001".
The 11th bit is "1".

 Constraints:

  • 1 <= n <= 20
  • 1 <= k <= 2n - 1

C++

  • class Solution {
    public:
        char findKthBit(int n, int k) {
            function<int(int, int)> dfs = [&](int n, int k) {
                if (k == 1) {
                    return 0;
                }
                if ((k & (k - 1)) == 0) {
                    return 1;
                }
                int m = 1 << n;
                if (k * 2 < m - 1) {
                    return dfs(n - 1, k);
                }
                return dfs(n - 1, m - k) ^ 1;
            };
            return '0' + dfs(n, k);
        }
    };

PYTHON

  • class Solution:
        def findKthBit(self, n: int, k: int) -> str:
            def dfs(n, k):
                if k == 1:
                    return 0
                if (k & (k - 1)) == 0:
                    return 1
                m = 1 << n
                if k * 2 < m - 1:
                    return dfs(n - 1, k)
                return dfs(n - 1, m - k) ^ 1
            
            return str(dfs(n, k))

JAVA

  • class Solution {
        public char findKthBit(int n, int k) {
            return (char) ('0' + dfs(n, k));
        }
    
        private int dfs(int n, int k) {
            if (k == 1) {
                return 0;
            }
            if ((k & (k - 1)) == 0) {
                return 1;
            }
            int m = 1 << n;
            if (k * 2 < m - 1) {
                return dfs(n - 1, k);
            }
            return dfs(n - 1, m - k) ^ 1;
        }
    }

Comments