1545 - Find Kth Bit in Nth Binary String
Given two positive integers n
and k
, the binary string Sn
is formed as follows:
S1 = "0"
Si = Si - 1 + "1" + reverse(invert(Si - 1))
fori > 1
Where +
denotes the concatenation operation, reverse(x)
returns the reversed string x
, and invert(x)
inverts all the bits in x
(0
changes to 1
and 1
changes to 0
).
For example, the first four strings in the above sequence are:
S1 = "0"
S2 = "011"
S3 = "0111001"
S4 = "011100110110001"
Return the kth
bit in Sn
. It is guaranteed that k
is valid for the given n
.
Example 1:
Input: n = 3, k = 1 Output: "0" Explanation: S3 is "0111001". The 1st bit is "0".
Example 2:
Input: n = 4, k = 11 Output: "1" Explanation: S4 is "011100110110001". The 11th bit is "1".
Constraints:
1 <= n <= 20
1 <= k <= 2n - 1
C++
class Solution { public: char findKthBit(int n, int k) { function<int(int, int)> dfs = [&](int n, int k) { if (k == 1) { return 0; } if ((k & (k - 1)) == 0) { return 1; } int m = 1 << n; if (k * 2 < m - 1) { return dfs(n - 1, k); } return dfs(n - 1, m - k) ^ 1; }; return '0' + dfs(n, k); } };
PYTHON
class Solution: def findKthBit(self, n: int, k: int) -> str: def dfs(n, k): if k == 1: return 0 if (k & (k - 1)) == 0: return 1 m = 1 << n if k * 2 < m - 1: return dfs(n - 1, k) return dfs(n - 1, m - k) ^ 1 return str(dfs(n, k))
JAVA
class Solution { public char findKthBit(int n, int k) { return (char) ('0' + dfs(n, k)); } private int dfs(int n, int k) { if (k == 1) { return 0; } if ((k & (k - 1)) == 0) { return 1; } int m = 1 << n; if (k * 2 < m - 1) { return dfs(n - 1, k); } return dfs(n - 1, m - k) ^ 1; } }
Comments
Post a Comment